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Brockett [l] formulated the following problem: given a triad of matrices A, B, C, under what conditions 
does a matrix K(t) exist such that the system 

is asymptotically stable? 

i = Ax + BK(t)Cx, x E R” 0) 

The problem of stabilizing system (1) using a constant matrixKis a classical one in automatic control 
theory [2,3]. From that standpoint, Brockett’s problem may be restated as follows: to what extent does 
the introduction of time-dependent matrices K(t) broaden the possibilities of classical stabilization? 

In stabilization problems for mechanical systems it is frequently necessary to consider a narrower 
class of stabilizing matrices K(t). These matrices must be periodic and have zero mean value over a 
period [0, r]. 

Consider, for example, linear approximation in the neighbourhood of the equilibrium position of a 
pendulum with vertically oscillating suspension point. 

G+aC)+(K(t)-oi)9=0 (2) 

where a and 00 are positive numbers. The most frequently considered functions K(t) here have the 
form j3sinc.x [4] or the following form [5,6] 

For such matrices K(r) stabilization of the upper equilibrium position of the pendulum for large o and 
small T is a well-known effect. 

In what follows are propose algorithms for constructing periodic piecewise-constant functions K(t) 
that solve Brockett’s problem in a variety of cases. 

In order to demonstrate the basic properties and advantages of these algorithms most simply, we 
will first consider Eq. (2) and prove the following result. 

Proposition. 1. Suppose 

(x2 < 4@ - 0;) (4) 

Then, for any number z > 0, a number T > z exists such that Eq. (2) with a function K(t) of type (3) 
is asymptotically stable. 

Hence, in particular, it follows that the upper equilibrium position of the pendulum can be stabilized 
with respect to low-frequency vertical oscillations of the suspension point. Naturally, the amplitude of 
the oscillation will then be large: a = lT*P/8, where 1 is the pendulum length and p the absolute value 
of the acceleration divided by 1. 
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To prove Proposition 1, we observe that, without loss of generality, we can assume that 

p-o&x2/4=1 

(this may be ensured by a suitable transformation of the time variable). 
Together with Eq. (2) consider the equivalent system 

(5) 

ti=rl, 7j=-aq-(K(t)-&8 (6) 

We will consider some properties of this system for K(t) = -p and K(t) = l3 that will be needed 
later. 

System (6) with K(f) = -p has a saddle-type singular point with stable manifold q = LrC3 and unstable 
manifold q = L#, where 

Now consider the fundamental matrixX(t) of system (6) when K(t) = l3 with initial data X(0) = I. It 
follows from condition (4) that the characteristic polynomial of this system has complex zeros; hence 
a number Ti > 0 exists such that the linear operator X(T,) maps the straight line ?J = L+3 onto the 
straight line TJ = L+3. It follows from (5) that the straight line n = L# is also mapped onto the straight 
line 7 = L+3 by the operatorsX(Ti + 2nj) (wherej are integers). 

We will show that 2(T, + 27cJ can be chosen as the number T for sufficiently largej. To do this, we 
consider system (6) in the case when 

-p for r~[O,Tf4) and tE[3Tl4 

p for t~[T/4,3T/4) (7) 

We will prove that the points of the sphere {q2 + Cl* c 11, moving along trajectories of system (6), (7), 
will fall, when t = T, into a sphere of radius g. To do this, we first note that the solutions of system 
(6) in the case when K(t) = -/3 with initial data at t = 0 from the sphere {r2 + Cl2 < 1) will fall at 
t = T/4 into an s-neighbourhood of the straight line TJ = L20, where 

E = v,exp(L,T/4) 

(vi is a certain number). In addition, these solutions satisfy the inequality 

(v2 is a certain number). 

n(T/4)2 +B(T/4)* G v2 exp(&T/2) (8) 

In the interval (T/4, 3T/3) the motion takes place along trajectories of system (6) in the case 
K(t) = l.3. As a result, the operator X(T/2) maps the s-neighbourhood of the straight line n = LzCl into 
a v+-neighbourhood of the straight line TJ = L+3 (vg is a certain number). It follows from inequality 
(8) and relation (5) that then 

r1(3Tf 4)L+8(3T/4)2 s v2 exp(hTl2) (9) 

In the interval (3T/4, T) the motion takes place along trajectories of system (6) in the case K(t) = -/3. 
From the fact that the points f3(3T/4), n(3T/4) are situated in the v+neighbourhood of the straight 
line rl = L&l and from inequality (9) it follows that the points 8(T), q(T) belong to an &i-neighbourhood 
of the straight line rl = L+3 and that 

where 

n(V2 +e(TJ2 c v4 exp[(L, + &)T/2] (10) 

ai = v~%v~ expl(L, + & )T / 41 (11) 

(v4 and v5 are certain numbers). 
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It follows from relations (10) and (11) and the inequality& + Lz < 0 that, by choosing Tsufficiently 
large, we can satisfy the inequality 

rl(T)* +e(r)* s % (12) 

It is well-known [5] that this inequality is a sufficient condition for asymptotic stability in linear systems 
with periodic coefficients. 

Thus, the stabilization algorithm described here is extremely simple and based on two properties of 
linear systems corresponding to system (6) with K(t) E -fi and K(t) = p. First, the solutions of the first 
of these systems are squeezed onto the unstable manifold more rapidly than they expand along that 
manifold. Second, this unstable manifold, after switching, may turn around along the trajectories of 
the second of these systems and, by the next switching, come to coincide with the stable manifold. 
Working in the interval (3T/4, T), one uses the predominance of squeezing over expansion and on the 
whole, up to time I = T, entirely eliminates expansion, embedding the solutions in a sphere whose radius 
is as small as desired. 

We will now describe an analogous algorithm for system (1). 
Let us assume that a matrix Ki exists such that the system 

X = (A +pBK,C)x (13) 

where u is a scalar uarameter, has a stable linear invariant manifold L(p) for lo 2 h, pe being a certain 
number. We will aLo assume’that 

;;il UP) = L, 

and that, for any number 6 > 0, a number pl 2 p. exists such that 

(14) 

Ix(l,x,)l~~, ~xoE(IXI=I)nLw, pal.4 (15) 

wherex(O,xo) =x0 and the limit (14) is understood in the sense that the set L(p) n { Ix 1 c 1) is contained 
in an s-neighbourhood of Lo fl { 1x1 s l}, where E + 0 as l_t + + 03. 

The assumption formulated here implies that the trajectories converge rapidly on the manifold L(p) 
for large values of the parameter p. 

Let M(p) denote a linear invariant manifold of system (13) such that 

lim MQ.t) = MO, dim M(P) + dim I!&) = n, M(p) n L(l.t) = (0) 
u++= 

We will assume that M(p) is a manifold of slow motions, that is, a number R exists such that, for all 

Pa’-, 

Ix(Lxo)l~ R, ~x~EJIxI=IJ~MO.LL) 

Let us assume now that a matrix K2 exists such that, for the system 

j, = (A + BK,C)y 

a number T exists for which 

(16) 

(17) 

Y(Wo c Lo (18) 
where Y(t) is a fundamental matrix of system (17) Y(0) = I. 

We define a (2 + $-periodic matrixK(t) as follows: 

K(r) = 
pK, for t~[O,l) and tc[1+7,2+T) 

K, for tE[l,l+T) (19) 

Theorem 1. System (1) with a matrix K(t) of the form (19) is asymptotically stable for sufficiently 
large p. 
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Proof. It follows from the construction of the sets La and Ma that, for any number E > 0, a number 
p2 2 p. exists possessing the following property. For Ix0 1 = 1 and p B p2, the solutionx(l,xo) of system 
(1) lies in the s-neighbourhood of the set 

Hence, and from condition (18), it follows that a number RI exists for which the following statement 
holds. For [xol = 1, ~12 CL, the solutionx(1 + T,XO) of system (1) lies in the Rig-neighbourhood of the 
set 

Hence it follows that for these solutions a number R2 exists for which 

M2 + z, x0)1 c R2e 

Choosing E sufficiently small (and therefore p sufficiently large), we deduce that for allxo on the sphere 
(1x1 = 1) 

This implies that system (1) with a periodic matrixK(t) of type (19) is indeed asymptotically stable. 
In order to verify condition (18), it is frequently useful to apply the following proposition for a periodic 

solution z(t) of the system 

i=Qz. ZER” 

where Q is a constant non-singular )2 x TZ matrix. 

(20) 

Lemma. For any vector h E R” a number T exists such that h*z(T) = 0. 

proof. Supposing the contrary, we obtain hZ(t) f 0, WER’. We may assume without loss of generality that 
h*z(t) > 0, Vt ER'. Hence, since z(t) is periodic, we obtain 

On the other hand, 

lim Z(r)= +oo, Z(f) = j h*z(f)& (21) 
I-_)+= 0 

z(r) = h’Q_’ (z(r) - z(O)) 

Hence, since z(t) is periodic, it immediately follows that the function Z(t) is periodic, contrary to relation (21). 
This contradiction proves the statement of the lemma. 

Theorem 2. Suppose matrices K, and K2 exist satisfying the following conditions: 
1) the matrixRKiC has IZ - 1 eigenvalues with negative real parts, and detR&C = 0, 
2) for any vector u # 0 such that RR&u = 0 and for some number h, the vector function 

exp[(A + BK$ + hl)t]u 

is periodic. 
Then a periodic matrix K(t) exists such that system (1) is asymptotically stable. 

Proof. It follows from condition 1 of the theorem that relations (14)-(X) hold, where Lo is a stable 
linear manifold of the system i = RR&z, and MO = {yu I~E R’}. 

By the lemma, it follows from condition 2 of the theorem that a number z exists for which 

exp[(A + BK2C)z]u E Lo 

Thus condition (18) is satisfied. Consequently, by Theorem 1, system (1) with a matrix of type (19) is 
asymptotically stable. 
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Theorem 2 admits of a particularly simple formulation in the two-dimensional case. 
Theorem 3. Let n = 2 and suppose matrices K1 and K2 exist satisfying the following conditions: 
1) detBK& = 0 and trBK,C f 0, 
2) the matrixA + B&C has complex eigenvalues. 
Then a periodic matrix K(t) of type (19) exists such that system (1) is asymptotically stable. 

Proof It follows from condition 1 of the theorem that the matrix BKIC has a non-zero eigenvalue. 
If this eigenvalue is negative, condition 1 of Theorem 2 holds; if it is positive, condition 1 of Theorem 
2 holds for -K1. 

Condition 2 of Theorem 2 follows at once from condition 2 of Theorem 3. 
We will now show how to apply Theorem 3 to a case which is important for control theory, i.e. when 

II = 2, B is a column vector, C is a row vector and K(t) is a scalar function. 
We introduce the transfer function of system (1) 

W(p)=C(A-p/)-‘B= pp+y 
P2 +w+P 

where p is a complex variable. 
In what follows, it will be assumed that p f 0. Then, in the case under consideration, we may assume 

without loss of generality that p = 
i.e., that 

1. We will also assume that the function W(p) is non-degenerate, 

f-ay+p*O 

It is well known [7] that in that case system (1) may be written in the form 

ir=Tj 4 = -aq--j30- K(t)(rj+yo) (22) 

It can be seen that stabilization of system (22) with a constant K(t) = K,, is possible if and only if 

a+K, >O, p+yKo >O 

A necessary and sufficient condition for a number K,, satisfying these inequalities to exist is that either 
y>OorySO,aycp. 

Let us consider the case when stabilization using a constant K(t) E K0 is impossible: 

We now apply Theorem 3. In this case the matrices K1 and KZ are numbers. Clearly, condition 1 of 
Theorem 3 is satisfied, since 

detBK,C= K,detBC=O, trBK,C= K,CB=-K, *to 

Condition 2 of Theorem 3 will be satisfied if, for some K,, the polynomial 

P* +ap+B+K*(p+y) 

has complex zeros. It is obvious that a necessary and sufficient condition for such a number K2 to exist 
is 

y-ay+p>O (23) 

Hence, if inequality (23) holds, a periodic function K(t) exists such that system (22) is asymptotically 
stable. 

If 

$-ay+f3<0 (24) 

then the following estimate holds for system (22) 
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(rl+ytr)‘=(-y*+cry-p)o>o, v’o70, q=-‘la 

Hence it follows that for o(O) 7 0, ~(0) + yo(0) 7 0, 

rl(t)+~(r)70, V’t 2 0 

But then S(t) = r(f) 7 0, Vf 5 0. This implies that system (22) is unstable. 
Thus, the following result holds. 

Theorem 4 [8]. If inequality (23) holds, a periodic function K(t) exists such that system (22) is 
asymptotically stable. 

If inequality (24) holds, there are no functions K(t) for which system (22) is asymptotically stable. 
This result was obtained in [9] in another class of stabilizing functions, of the form 

K(f)= (k, +k,wcosor), 0 + I 

using the method of averaging. 
We will not show that the method proposed here for constructing piecewise-constant stabilizing 

functions also enables one to consider Brockett’s problem for the case when II = 3, B is a column vector, 
C is a row vector and K(t) is a scalar function. 

Let us assume that the following conditions are satisfied: 
1) CB c 0, 
2) the matrixA has two complex eigenvalues with positive real parts and one negative eigenvalue, 
3) for some number k, the function 

G(t) = Cexp[(A + kBC)t]B 

has at least one zero in the interval (--, 0), 
4) det(B, AB, A2B) f 0. 

(25) 

Theorem 5. If conditions l-4 are satisfied, a periodic function K(t) exists such that system (1) is 
asymptotically stable. 

Proof, We will describe an algorithm for constructing the required function K(t). The specific feature 
of this problem is that strong contraction in the phase space R3 = {x} may be obtained by choosing 
K(t) = rl, q %- 1, only in one direction, parallel to the vector B. The algorithm for constructing a stabilizing 
function K(t) therefore has more steps here than in the proof of the previous propositions. We 
will consider each step in succession, observing the transformations along trajectories in R3 of the unit 
sphere 52. 

1. In the set [O, l] we define K(t) as follows: K(t) = p, where p is a large parameter. The sphere 51 
is “flattened” into an ellipsoid 51i in an a-neighbourhood of the plane {CX = 01, where E = E(F) is a 
small number. Thus, the resulting ellipsoid Q1 =x(1, SL) has one principle semiaxis of the order of O(E) 
and two other principle semiaxes which depend on A, B and C. 

2. Consider the interval [l, l-r], where z is a zero of function (25) in the interval (--, 0). We define 
K(t) in this interval as follows: K(t) = k. Obviously, the solution z(t, B) of the system 

i = (A + kBC)z 

with initial data ~(0, B) = B satisfies the equality 

Cz(r, B) = 0 

(26) 

Hence it follows that the ellipse 

n, n (Cx=O) 

transformed along trajectories of system (1) over [l, 1 - z], will intersect the straight line 0-B JEER’} 
at time t = 1 - 0. 

3. In the interval (1 - z, 2 - z) we define K(t) as at the first step, as follows: 
K(t) = p, p + 1. 
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Here the intersection of the ellipse with the straight line {hB 1 h ERR), transformed along trajectories 
of system (l), is “flattened” at time t = 2 - z into an ellipse in an s-neighbourhood of some section of 
the straight line {vd, VE[-1, 11) situated in the plane {CX = 0): Cd = 0. 

Hence, at time t = 2 - z the unit sphere Q, transformed along trajectories of system (1) over the 
interval (0, 2 - r), is transformed into an ellipsoid situated in an O(s)-neighbourhood of the section 
{vd, v E[-1, 11). 

4. In the interval [2 - r, 2 - r + T, ] we define K(t) = 0, where the number T1 is defined as follows. 
Let {he jh ER’} denote a stable linear manifold of system (26), where e E R3. Let Y be the plane spanned 
by the vectors e and B. The existence of such a plane follows from condition 4 of Theorem 5. Define 
Ti to be the first time in the set [0, + -) at which the plane Y is cut by a solution z(t, d) of system (26) 
with initial data ~(0, d) = d. The existence of Ti follows from condition 1 of Theorem 5. 

5. In the set (2 -z + Ti, 2 -z + Tr + Tz], define K(t) = n or K(t) = -p, ~1% 1. Here the number T, 
and the sign of K(t) are chosen in such a way that the vector z(Tl, d) will transform into a vector x(T, 
+ T2, z(Tl, d)) situated in the c-neighbourhood of the stable manifold {he ( AER'}. 

6. In the set (2 - z + Tl + T2, 2 - ‘c + Tl + T2 + T3], define K(t) = 0, where the number T3 is chosen 
so large that 

(27) 

Such a number exists provided the number E = E(P) mentioned in step 5 is sufficiently small. 
Since the image of the unit sphere Sz, displaced along solutions of system (1) will lie at time 

t = 2 - ‘t + Tl + T2 + T3 in a small neighbourhood of the vectorx(T3, x(Tl + T2, z(Tl, d)), we can state, 
as follows from inequality (27), that this image lies in a sphere of radius ‘/2. This is equivalent to the 
statement that system (l), with the (2 - z + T, + T2 + T3)-periodic function K(t) just constructed, is 
asymptotically stable. This proves Theorem 5. 

Note that conditions l-3 of Theorem 5 may be replaced by the following, formally less restrictive, 
conditions: 

1) CB f 0, 
2) a number ki exists such that the matrixA + klBC has two complex eigenvalues and one negative 

eigenvalue, 
3) a number k2 exists such that the function Cexp[(A + k,BC)t]B has at least one zero in the interval 

(--9 0). 
Note also that Theorem 5 may be considered as an extension of Theorem 4 to the three-dimensional 

case. 
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